Abstract

Confocal microscopy is providing new and exciting opportunities for imaging cell structure and physiology in thick biological specimens, in three dimensions, and in time. The utility of confocal microscopy relies on its fundamental capacity to reject out-of-focus light, thus providing sharp, high-contrast images of cells and subcellular structures within thick samples. Computer controlled focusing and image-capturing features allow for the collection of through-focus series of optical sections that may be used to reconstruct a volume of tissue, yielding information on the 3-D structure and relationships of cells. Tissues and cells may also be imaged in two or three spatial dimensions over time. The resultant digital data, which encode the image, are highly amenable to processing, manipulation and quantitative analyses. In conjunction with a growing variety of vital fluorescent probes, confocal microscopy is yielding new information about the spatiotemporal dynamics of cell morphology and physiology in living tissues and organisms. Here we use mammalian brain tissue to illustrate some of the ways in which multidimensional confocal fluorescence imaging can enhance studies of biological structure and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.