Abstract

Abstract Human African Trypanosomiasis (HAT) is caused by the African trypanosome, a single-cell parasite that proliferates in the blood and cerebrospinal fluid of infected patients. Diagnostic measures for this pathogen are currently not sufficiently robust and reliable enough to permit effective disease control procedures. As a consequence, we suggested the development of a new sensor type, combining the selectivity of parasite-specific nucleic acid aptamers with the sensitivity of resonant electromagnetic devices to capture and detect the disease-causing organism. While we accomplished the detection of parasite cells in dehydrated specimens, here we summarize our recent progress toward electromagnetic sensors capable of uncovering parasites in liquid patient samples. We present a technique for the removal of blood cells from blood specimens and the deposition of trypanosome cells on glass microfiber membranes for dielectric spectrometry. Liquid suspensions of trypanosomes are characterized to determine the actual dielectric properties of single parasites and lastly, we present two sensor concepts optimized for the detection in liquids, along with a fabrication technique for the integration of microfluidic sample confinements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call