Abstract

This paper introduces concepts and methodologies for multiscale modeling in architecture, and demonstrates their application to support bi-directional information flows in the design of a panelized, thin skinned metal structure. Parameters linked to the incremental sheet forming fabrication process, rigidisation, panelization, and global structural performance are included in this information flow. The term multiscale refers to the decomposition of a design problem into distinct but interdependent models according to scales or frameworks, and to the techniques that support the transfer of information between these models. We describe information flows between the scales of structure, panel element, and material via two mesh-based approaches. The first approach demonstrates the use of adaptive meshing to efficiently and sequentially increase resolution to support structural analysis, panelization, local geometric formation, connectivity, and the calculation of forming strains and material thinning. A second approach shows how dynamically coupling adaptive meshing with a tree structure supports efficient refinement and coarsening of information. The multiscale modeling approaches are substantiated through the production of structures and prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.