Abstract

To ensure low power consumption while maintaining flexibility and performance, future Systems-on-Chip (SoC) will combine several types of processor cores and data memory units of widely different sizes. To interconnect the IPs of these heterogeneous platforms, Networks-on-Chip (NoC) have been proposed as an efficient and scalable alternative to shared buses. NoCs can provide throughput and latency guarantees by establishing virtual circuits between source and destination. State-of-the-art NoCs currently exploit Time-Division Multiplexing (TDM) to share network resources among virtual circuits, but this typically results in high network area and energy overhead with long circuit set-up time. We propose an alternative solution based on Spatial Division Multiplexing (SDM). This paper describes our design of an SDM-based network, discusses design alternatives for network implementation and shows why SDM can be better adapted to NoCs than TDM in a specific context. Our case study clearly illustrates the advantages of our technique over TDM in terms of energy consumption, area overhead, and flexibility. A comparison is also performed with a State-of-the-Art industrial reference NoC: Arteris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.