Abstract
A new class of implicit high-order non-oscillatory time integration schemes is introduced in a method-of-lines framework. These schemes can be used in conjunction with an appropriate spatial discretization scheme for the numerical solution of time dependent conservation equations. The main concept behind these schemes is that the order of accuracy in time is dropped locally in regions where the time evolution of the solution is not smooth. By doing this, an attempt is made at locally satisfying monotonicity conditions, while maintaining a high order of accuracy in most of the solution domain. When a linear high order time integration scheme is used along with a high order spatial discretization, enforcement of monotonicity imposes severe time-step restrictions. We propose to apply limiters to these time-integration schemes, thus making them non-linear. When these new schemes are used with high order spatial discretizations, solutions remain non-oscillatory for much larger time-steps as compared to linear time integration schemes. Numerical results obtained on scalar conservation equations and systems of conservation equations are highly promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.