Abstract
Deep convolutional neural network (CNN) and its derivatives have recently shown great promise in the prediction of brain disorders using brain connectome data. Existing deep CNN methods using single global row and column convolutional filters have limited ability to extract discriminative information from brain connectome for prediction tasks. This paper presents a novel deep Connectome-Inception CNN (ConCeptCNN) model, which is developed based on multiple convolutional filters. The proposed model is used to extract topological features from brain connectome data for neurological disorders classification and analysis. The ConCeptCNN uses multiple vector-shaped filters extract topological information from the brain connectome at different levels for complementary feature embeddings of brain connectome. The proposed model is validated using two datasets: the Neuro Bureau ADHD-200 dataset and the Cincinnati Early Prediction Study (CINEPS) dataset. In a cross-validation experiment, the ConCeptCNN achieved a prediction accuracy of 78.7% for the detection of attention deficit hyperactivity disorder (ADHD) in adolescents and an accuracy of 81.6% for the prediction of cognitive deficits at 2 years corrected age in very preterm infants. In addition to the classification tasks, the ConCeptCNN identified several brain regions that are discriminative to neurodevelopmental disorders. We compared the ConCeptCNN with several peer CNN methods. The results demonstrated that proposed model improves overall classification performance of neurodevelopmental disorders prediction tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.