Abstract

In this paper, we go beyond the traditional web search engines that are based on keyword search and the Semantic Web which provides a common framework that allows data to be shared and reused across application,. For this reason, our view is that “Before one can use the power of web search the relevant information has to be mined through the concept-based search mechanism and logical reasoning with capability to Q&A representation rather than simple keyword search”. In this paper, we will focus on development of a framework for reasoning and deduction in the web. A new web search model will be presented. One of the main core ideas that we will use to extend our technique is to change terms-documents-concepts (TDC) matrix into a rule-based and graph-based representation. This will allow us to evolve the traditional search engine (keyword-based search) into a concept-based search and then into Q&A model. Given TDC, we will transform each document into a rule-based model including it’s equivalent graph model. Once the TDC matrix has been transformed into maximally compact concept based on graph representation and rules based on possibilistic relational universal fuzzy–type II (pertaining to composition), one can use Z(n)-compact algorithm and transform the TDC into a decision-tree and hierarchical graph that will represents a Q&A model. Finally, the concept of semantic equivalence and semantic entailment based on possibilistic relational universal fuzzy will be used as a basis for question-answering (Q&A) and inference from fuzzy premises. This will provide a foundation for approximate reasoning, language for representation of imprecise knowledge, a meaning representation language for natural languages, precisiation of fuzzy propositions expressed in a natural language, and as a tool for Precisiated Natural Language (PNL) and precisation of meaning. The maximally compact documents based on Z(n)-compact algorithm and possibilistic relational universal fuzzy–type II will be used to cluster the documents based on concept-based query-based search criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.