Abstract

AbstractAlthough BKNO3 ignited by ZPP is commonly used as an explosive charge for many pyrotechnics, only a limited number of modeling studies can be found in the literature. Thus, recently proposed governing equations for combustion modeling of ZPP are supplemented to simulate the combustion of the BKNO3 with ZPP. The combustion model was independently validated using CBT results with fixed volume chambers of various sizes. In this process, the concept of the unburning ratio was introduced to correlate the combustion modeling with actual phenomena. The term “unburned” means that some fraction of explosive charge turns into non‐reactive solid rather than into combustion products. The model was then coupled with the equations of motion for the internal moving parts of a pyroshock‐reduced separation nut. Tests with prototype were performed to validate the coupled model. For accurate verification, the pressure of the expansion chamber and annular chamber and the displacement of the bolt were measured and compared. All measurements are in good agreement with the analysis results obtained from the coupled model. The results validated the generality of the modeling approach for the simulation of the pyroshock‐reduced separation nut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.