Abstract

The population of photogenerated species in organic semiconductors may decay due to their mutual annihilation upon collisions during their diffusive motion. The standard kinetic models for the population decay, n(t), assume a time-invariant diffusion coefficient, i.e., D(t) ≡ constant. This leads to a failure in predicting the experimentally observed temporal evolution of photogenerated species if it asymptotically approaches a power-law decay n(t) ∼ t–x, with x < 0.5. We have used a concept of the time-dependent diffusion coefficient and developed a novel mathematical method of its determination from decay collision rates obtained by transient optical absorption spectroscopy. We tested the applicability of this method on the interpretation of data of the decay of polaron population obtained experimentally by time-resolved transient absorption measurements on thin films of regioregular poly(3-hexylthiophene), where we recently reported a power-law asymptote with x = 0.24. While we do not assume any micros...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.