Abstract

ABSTRACTCrystalline ion conductors like RbAg4I5 and others display a characteristic shape of their dispersive conductivities at frequencies below the microwave regime. As the temperature is decreased, the onset of the dispersion is shifted to lower frequencies and thus the characteristic shape of the dispersion becomes visible in an increasingly broad frequency range. In a log-log plot of the frequency-dependent conductivity, the slope is found to increase continuously, but not to surpass unity. For the first time, this behavior is now consistently explained. The particular shape of the dispersion is shown to be equivalent to a proportionality of the rates of relaxation via the singleand many-particle routes. This is the essence of the concept of mismatch and relaxation (CMR). Model conductivity spectra based on the CMR include the UDR (universal dynamic response) as well as the NCL (nearly constant loss) behavior. Both universalities are thus traced back to a common dynamic origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call