Abstract
We demonstrate a liquid crystal (LC)-based optical device with the polarization switching capability, which can store two different chiral images to be selected according to the polarization state of the viewing polarizer. The chiral dual-image device consists of chiral surface patterns for image storage and the LC layer as a tunable phase retarder. Each chiral surface pattern behaves as a helical photonic crystal that reflects circularly polarized light at a specific wavelength. Depending on the applied voltage across the LC layer, either a right-handed or a left-handed circular polarization image appears, and thus one of the two stored images can be selectively read by the polarization state. Our concept of the LC-based chiral image storage and selection provides simplicity in fabrication, flexibility in design, and high optical efficiency. It will be directly applicable for reflective-type 3D displays, color filters, and anti-counterfeiting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.