Abstract
Food byproduct streams can potentially be transformed into value-added products such as microbial lipids in bioprocesses based on the non-conventional Yarrowia yeast. The effect of culture conditions of Y. lipolytica KKP 379 wild strain in waste media on the efficiency of lipid accumulation, fatty acid composition, presence of selected sterols, yield and elemental composition of biomass has been studied. Batch and fed-batch bioreactor cultures were carried out in media with molasses hydrolysate (MH) and post-frying rapeseed oil. It was determined that biomass grown in MH contained more minerals than in medium with rapeseed post-frying oil. Considering the PDSC study, the Tmax of oxidation induction ranged from 10.04–26.36 min for the analyzed samples. The biomass from fed-batch cultures with MH had the highest total sterol content (68.40 mg/goil), dominated by ergosterol at 60.16 mg/g. Feeding with post-frying rapeseed oil with new doses of mineral medium promoted maintaining the cellular lipid content at a high level (30.75–31.73%) for 50 h, with maximum yield at 37.50%. The results of the experiment showed that the cellular lipid accumulation efficiency of Y. lipolytica yeast and the content of sterols in the cell membrane can be manipulated by selecting waste substrates and culture mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.