Abstract

Currently, most cotton textile waste is sent to landfill. However, due to the use of synthetic additives and the chemical treatment of cotton fibers, cotton textile waste is difficult to biodegrade. Cotton textile waste can also be subjected to material recycling, or to incineration/gasification to produce energy. Here, we present the optimization of acid hydrolysis of cotton yarn fibers for glucose efficiency. The cotton yarn hydrolysates showed great potential for replacing simple sugar solutions in fermentation media. The highest glucose concentration was obtained in the hydrolysates of cotton yarn hydrolyzed in a 2% solution of sulfuric acid or phosphoric acid at 140–160 °C for 2 h. After 2 h of hydrolysis at 140 °C with 2% H3PO4, the concentration of glucose in the cotton yarn hydrolysate (13.19 g/L) increased fivefold compared with cotton yarn treated under the same conditions with H2SO4 (2.65 g/L). The structural modifications in the solid residues after acid hydrolysis were analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS), attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR), and Raman spectroscopy. The SEM images, IR spectra, and Raman spectra revealed that the most significant changes in the morphology of the fibers occurred when the process was carried out at high temperatures (≥140 °C). Better growth of the yeast strains Saccharomyces cerevisiae Ethanol Red and Saccharomyces cerevisiae Tokay ŁOCK0204 was observed in the medium containing phosphoric acid hydrolysate. The maximum methane yield of 278 dm3/kgVS and the maximum hydrogen yield of 42 dm/kgVS were reported for cotton yarn waste after pretreatment with H3PO4. This might have been linked to the beneficial effect of phosphorus, which is a key nutrient for anaerobic digestion. The proposed hydrolysis method does not generate fermentation inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.