Abstract

AbstractProcess-induced residual stress is a major challenge in today's additive manufacturing (AM) processes, such as powder bed fusion by laser beam melting of metal. After the AM process, the exact stress state is usually unknown, and parts often require heat treatment to relieve residual stress. In-process measurement of residual stress is currently not possible. This paper presents a concept to derive the measurement of the residual stress by analyzing the structure-borne sound induced during the AM process. The first step of the concept is to integrate a device into a build plate to set a defined mechanical load during the manufacturing process. Then, samples can be fabricated on this build plate in several steps. By applying mechanical load with the device, the stress state in the samples can be changed between the fabrication steps. During this stepwise fabrication process, the structure-borne sound signal is recorded. Subsequently, the correlation between the stress states and the acoustic process emissions is analyzed using FFT, STFT and cross-spectral analyses. The overall goal is to establish a model to determine residual stress in AM components by evaluating the acoustic process emissions.KeywordsAdditive manufacturingResidual stressStructure-Borne soundQuality control

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.