Abstract
Concept extraction is the technique of mining the most important topic of a document. In the e-commerce context, concept extraction can be used to identify what a shopping related Web page is talking about. This is practically useful in applications like search relevance and product matching. In this paper, we investigate two concept extraction methods: Automatic Concept Extractor (ACE) and Automatic Keyphrase Extraction (KEA). ACE is an unsupervised method that looks at both text and HTML tags. We upgrade ACE into Improved Concept Extractor (ICE) with significant improvements. KEA is a supervised learning system. We evaluate the methods by comparing automatically generated concepts to a gold standard. The experimental results demonstrate that ICE significantly outperforms ACE and also outperforms KEA in concept extraction. To demonstrate the practical use of concept extraction in the e-commerce context, we use ICE and KEA to showcase two e-commerce applications, i.e. product matching and topic-based opinion mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.