Abstract
Concept considerations for a space mission with the objective of precisely testing the gravitational motion of a small test mass in the solar system environment are presented. In particular, the mission goal is an unambiguous experimental verification or falsification of the Pioneer anomaly effect. A promising concept is featuring a passive reference mass, shielded or well modeled with respect to nongravitational accelerations and formation flying with a rather standard deep space probe. The probe provides laser ranging and angular tracking to the reference mass, ranging to Earth via the radio-communication link and shielding from light pressure in the early parts of the mission. State-of-the-art ranging equipment can be used throughout, but requires in part optimization to meet the stringent physical budget constraints of a deep space mission. Mission operation aspects are briefly addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.