Abstract

In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.

Highlights

  • In the orthopaedic and rehabilitative fields, there is an increasing interest in the design of customized upper extremity orthosis able to accommodate interindividual anatomy variations of the human body

  • We consider the creation of personalized upper limb orthoses, including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning

  • Hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality

Read more

Summary

Introduction

In the orthopaedic and rehabilitative fields, there is an increasing interest in the design of customized upper extremity orthosis able to accommodate interindividual anatomy variations of the human body. Prefabricated orthosis and splints can be uncomfortable and unfit, implying various problems such as pain, edema, pressure, and perspiration, often causing important functional loss or even invalidating the therapeutic action of the device [1]. Additive manufacturing technologies, preceded by a reverse engineering process to acquire the geometry and design the orthosis [2], allow the achievement of high levels of customization. Personalized shape modeling can be achieved starting from conventional diagnostic imaging modalities [3, 4], acquisitions by means of 3D scanning devices are often more effective. Anatomical data can drive the design of the orthosis through purposeful software. Various rapid prototyping techniques are applicable in the biomedical field, thanks to the continuous evolution of available material and the decrease of the device and production costs [5, 6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call