Abstract

We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting of concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs have been studied as aqueous sensors that are specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10−5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for nine other water-soluble common analytes, the capability to entirely recover its base signal after water flushing, and a very low operation voltage. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode, and enables an increase in the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 µm, and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device—more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talk, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore further promote the development of OECT biosensors.

Highlights

  • Polymeric-semiconductor devices have already shown great promise to substitute many technologies behind consumer products such as electronics [1], photovoltaics [2], lighting [3], and displays [4]

  • The ability to realise this kind of sensor is of the clearest interest. These organic electrochemical transistors (OECTs) have shown various performances depending on their geometry, and in this study we have explored the hydrazine-enabled gate OECT

  • We demonstrate the OECT to be far more selective to hydrazine

Read more

Summary

Introduction

Polymeric-semiconductor devices have already shown great promise to substitute many technologies behind consumer products such as electronics [1], photovoltaics [2], lighting [3], and displays [4]. Organic electrochemical transistors are a type of electrolyte-gated transistors in which the constituting semiconducting ionomer blend has a good affinity with cations. As such, this platform is extensively studied as a bio-electronical interface to measure neural activity [7,8,9]. The ability to realise this kind of sensor is of the clearest interest These OECTs have shown various performances depending on their geometry, and in this study we have explored the hydrazine-enabled gate OECT on a population of 80 devices with different geometries to better understand their functioning

Materials and Methods
Selectivity
Structure–Property Study of a Population of 80 OECTs
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call