Abstract
We develop an efficient and accurate method for numerical evaluation of nonadiabatic (NA) coupling in the Kohn-Sham representation with projector augmented-wave (PAW) pseudopotentials that are commonly used in electronic structure calculations on nanoscale, condensed matter, and molecular systems. Without additional cost, the method provides an order of magnitude improvement in accuracy compared to the current technique, while it is 3-4 orders of magnitude faster than the exact evaluation. Atomic displacements over typical time steps in molecular dynamics (MD) simulations are much smaller than the size of the PAW core region, and therefore, evaluation of the NA in the core is simplified. The accuracy is demonstrated with three condensed matter systems. The method is robust to variation in the MD time step. The accurate NA coupling evaluation also helps in maintaining phase-consistency of the NA coupling and identifying trivial crossings of adiabatic states. The approach stimulates NAMD applications to modeling of modern materials and processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.