Abstract

Cadmium and lead were determined simultaneously in seawater by differential pulse stripping voltammetry (DPSV) preceded by adsoptive collection of complexes with 8-hydroxyquinoline (oxine) on to a hanging mercury drop electrode (HMDE). In preliminary experiments the optimal analytical condition for oxine concentration was found to be 2.10(-5) M, at pH 7.7, the accumulation potential was -1.1 V, and the initial scannig potential was -0.8 V. The peak potentials were found -0.652 V for Cd and -0.463 V for Pb At the 60 s accumalation time. The limit of detection (LOD) and limit of quantitatification (LOQ) were found to be by voltammetry as 0.588 and 1.959 microg l(-1) (RSD, 5.50%) for Cd and 0.931 and 3.104 microg l(-1) (RSD, 4.10%) for Pb at 60 s stirred accumulation time respectively. In these conditions the most of the seawater samples are amenable for direct voltammetric determination of cadmium and lead using a HMDE. An adsorptive stripping mechanism of the electrode reaction was proposed. For the comparison, seawater samples were also analysed by ICP-atomic emission spectrometry method (ICP-AES). The applied voltammetric technique was validated and good recoveries were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call