Abstract

The fungicide folpet is rapidly degraded into phthalimide (PI) during both thermal processing and analytical procedures in sample preparation; thus, its residue definition has been modified into the sum of itself and PI. Tea is one of the world's most popular nonalcoholic beverages, where folpet is not listed as an applicable pesticide. To demonstrate how serious false-positives and overestimation in dietary risk are caused by the application of a new residue definition, the residue pattern of PI in made tea and processed tea leaves, along with its transfer rate during tea brewing and corresponding dietary risk, were investigated in the present study. The results revealed that PI residue in tea ranged from <10 μg/kg to 180 μg/kg with a median value of 10 μg/kg, 7.3 % of which was over the maximum residue limit established by EU (100 μg/kg, expressed as folpet). The PI residue in green tea was obviously higher than that in black, dark and oolong tea. Simulated heating experiments revealed that PI can arise from improper heating of folpet-free fresh tea leaves, and thus green tea bears a higher risk for its manufacturing employing a comparatively higher temperature. The transfer rate of PI during tea brewing was 104 ± 14 %. Nevertheless, the risk of PI through drinking tea was negligible to humans depending on the risk quotient (RQ) value, which was significantly lower than 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.