Abstract

HynSL hydrogenase from Thiocapsa roseopersicina was applied to catalyze the oxidation of molecular hydrogen in a new, improved, thin-layer reaction chamber. Investigation of the nature of this catalysis via the development of reduced benzyl viologen showed clearly the typical characteristics of an autocatalytic reaction: propagation of a reaction front originating from a single point, with a constant velocity of front propagation. The dependence of the reaction velocity on enzyme concentration was a power function with a positive enzyme concentration threshold, with an exponent of 0.4 ± 0.05. This indicates that the autocatalyst is an enzyme form. The front velocity decreased on increase of the electron acceptor concentration, as a sign that the autocatalyst interacts directly with the final electron acceptor. Overall, it may be concluded that the autocatalyst is an enzyme form in which [FeS] distal is reduced. Model calculations corroborate this. Because the reduction of all [FeS] clusters would be possible in a nonautocatalytic reaction, we hypothesize a small conformational change in the enzyme, catalyzed by the autocatalyst, which removes a block in the electron flow in either [NiFe] → [FeS] proximal or the [FeS] proximal → [FeS] distal reaction step, or removes a block of the penetration of gaseous hydrogen from the surface to the [NiFe] cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call