Abstract

Chlorpyrifos oxon (CPO) is the active metabolite of the organophosphorus pesticide, chlorpyrifos. CPO is a potent inhibitor of acetylcholinesterase (AChE) and other serine hydrolases including fatty acid amide hydrolase (FAAH). AChE is critical in regulating cholinergic signaling while FAAH catalyzes the inactivation of fatty acid signaling lipids including the endocannabinoid (eCB) N-arachidonylethanolamine (anandamide, AEA) and eCB-like metabolites (e.g., oleoylethanolamide, OEA). AEA and OEA are both peroxisome proliferator-activated receptor (PPAR) agonists that regulate numerous genes involved in lipid metabolism and energy homeostasis. We used the MCF-7 human breast cancer cell line, which expresses AChE, FAAH and PPAR alpha and gamma subtypes, to evaluate the potential effects of CPO on PPAR-related gene expression in an in vitro human cell system. CPO elicited relatively similar concentration-dependent inhibition of both AChE and FAAH. Marked concentration- and time-dependent changes in the expression of four selected PPAR-related genes, LXRα, ACOX1, ABCG2 and AGPAT2, were noted. These findings suggest chlorpyrifos may influence lipid metabolism through blocking the degradation of eCBs or eCB-like metabolites and in turn affecting PPAR receptor activation. The results highlight the potential for non-cholinesterase actions of this common insecticide metabolite through disruption of PPAR signaling including effects on lipid metabolism, immune function and inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call