Abstract

Crystalline oxide ceramics, more particularly zirconia and spinel, are promising matrices for plutonium and minor actinide transmutation. An important issue concerning these materials is the investigation of their ability to confine radiotoxic elements resulting from the fission of actinides. This letter reports the study of the release, upon annealing or irradiation at high temperature, of one of the most toxic fission product (Cs) in zirconia. The foreign species are introduced by ion implantation and the release is studied by Rutherford backscattering experiments. The results emphasize the decisive influence of the fission product concentration on the release properties. The Cs mobility in zirconia is strongly increased when the impurity concentration exceeds a threshold of the order of a few atomic per cent. Irradiation with medium-energy heavy ions is shown to enhance Cs outdiffusion with respect to annealing at the same temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call