Abstract

We present the results of theoretical and experimental studies of the optical attenuation spectra of planar nanocomposites consisting of close-packed monolayers of metallic nanoparticles placed in different dielectric matrices. We have analyzed the dependence of the spectral position of the collective surface plasmon resonance (collective SPR) on the refractive index of the dielectric environment. The experimental samples were created by successive thermal vaporization under vacuum of a metal and a dielectric. The theoretical calculations were performed using the quasicrystal approximation of multiple wave scattering theory. We have shown that an increase in the concentration of nanoparticles of noble metals shifts the maximum of the collective SPR band toward longer wavelengths, and significantly increases the sensitivity of its spectral position to the refractive index of the dielectric environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.