Abstract

Fluorescence concentration quenching occurs when increasing molecular concentration of fluorophores results in a decreasing fluorescence quantum yield. Even though this phenomenon has been studied for decades, its mechanisms and signatures are not yet fully understood. The complexity of the problem arises due to energy migration and trapping in huge networks of molecules. Most of the available theoretical work focuses on integral quantities like fluorescence quantum yield and mean excitation lifetime. In this work, we present a numerical study of the fluorescence decay kinetics of three-dimensional and two-dimensional molecular systems. We investigate the differences arising from the variations in models of trap formations. We also analyze the influence of the molecular orientations to the fluorescence decay kinetics. We compare our results to the well-known analytical models and discuss their ranges of validity. Our findings suggest that the analytical models can provide inspiration for different ways of approximating the fluorescence kinetics, yet more detailed analysis of the experimental data should be done by comparison with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.