Abstract

This is Part II of our study on the positive steady state of a quasi-linear reaction-diffusion system in one space dimension introduced by Klausmeier and Litchman for the modelling of the distributions of phytoplankton biomass and its nutrient. In Part I, we proved nearly optimal existence and nonexistence results. In Part II, we obtain complete descriptions of the profile of the solutions when the coefficient of the drifting term is large, rigorously proving the numerically observed phenomenon of concentration of biomass for this model. Moreover, we reveal four critical numbers for the model and provide further insights to the problem being modelled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.