Abstract
The formation of concentrated vortices like tornadoes and tropical cyclones in rotating fluids is of much interest in atmospheric flows. It is shown by direct numerical simulation that the selective decay of inviscid invariants leads to concentration of vorticity in a destabilized vortex. By selective decay we mean here that the circulation of the mean flow decays faster than the angular momentum or energy. Initially localized disturbances are superimposed onto the two-dimensional flattened Taylor–Green vortices to trigger the elliptic instability. In the later stage of nonlinear evolution of the disturbance circulation decays faster than angular momentum and energy, giving rise to a sharp peak in the vorticity distribution of the mean flow. During the selective decay vortex pairs reconnect and eventually annihilate at the cell boundaries of the Taylor–Green vortices. By evaluating the weight function of the inviscid invariants it is shown that the loss of angular momentum is much smaller than that of circulation when vorticity is lost at the cell boundary by reconnection or annihilation. Thus the reconnection and subsequent annihilation of vortex pairs is responsible for the selective decay and concentration of vorticity. The relevance of the mechanism to previous experiments and general cases is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.