Abstract

For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $\omega_\xi^s$, where $\xi \in \mathfrak{t}^*_+$ is in the positive Weyl chamber and $s \in \mathbb{R}$. The symplectic form $\omega_\xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $\xi$. The cohomology class of $\omega_\xi^s$ is independent of $s$ for a fixed value of $\xi$. In this paper, we show that as $s\to -\infty$, the symplectic volume of $\omega_\xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T \cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.