Abstract

We consider a finite or countable collection of one-dimensional Brownian particles whose dynamics at any point in time is determined by their rank in the entire particle system. Using transportation cost inequalities for stochastic processes we provide uniform fluctuation bounds for the ordered particles, their local time of collisions and various associated statistics over intervals of time. For example, such processes, when exponentiated and rescaled, exhibit power law decay under stationarity; we derive concentration bounds for the empirical estimates of the index of the power law over large intervals of time. A key ingredient in our proofs is a novel upper bound on the Lipschitz constant of the Skorokhod map that transforms a multidimensional Brownian path to a path which is constrained not to leave the positive orthant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.