Abstract

We study the concentration of random kernel matrices around their mean. We derive nonasymptotic exponential concentration inequalities for Lipschitz kernels assuming that the data points are independent draws from a class of multivariate distributions on $\mathbb{R}^{d}$, including the strongly log-concave distributions under affine transformations. A feature of our result is that the data points need not have identical distributions or zero mean, which is key in certain applications such as clustering. Our bound for the Lipschitz kernels is dimension-free and sharp up to constants. For comparison, we also derive the companion result for the Euclidean (inner product) kernel for a class of sub-Gaussian distributions. A notable difference between the two cases is that, in contrast to the Euclidean kernel, in the Lipschitz case, the concentration inequality does not depend on the mean of the underlying vectors. As an application of these inequalities, we derive a bound on the misclassification rate of a kernel spectral clustering (KSC) algorithm, under a perturbed nonparametric mixture model. We show an example where this bound establishes the high-dimensional consistency (as $d\to \infty $) of the KSC, when applied with a Gaussian kernel, to a noisy model of nested nonlinear manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.