Abstract
The concentration of metabolically active (i.e. 'free') oxaloacetate in the mitochondrial compartment of isolated liver cells was investigated by two independent approaches. On the basis of mitochondrial aspartate aminotransferase maintaining equilibrium and the direct measurements of mitochondrial aspartate, 2-oxoglutarate and glutamate, the concentration of free oxaloacetate was calculated to be 5 microM after incubation of hepatocytes in the presence of 1.5 mM-lactate and 0.05 mM-oleate. Gradually increasing oleate up to 0.5 mM decreased the free oxaloacetate to 2 microM. Very similar results were obtained when free oxaloacetate concentration was derived from the CO2 production of hepatocytes as a measure of citrate flux through the tricarboxylic acid cycle, and the kinetic data on citrate synthase in situ. The decrease in free oxaloacetate on increasing oleate concentration was associated with lowered rates of cycle-dependent CO2 output and O2 uptake, indicating a decrease in the disposal of acetyl-CoA into the tricarboxylic acid cycle. This decrease could explain 25-30% of the increase in ketone-body production occurring at elevated fatty acid supply. This work documents on a quantitative basis the role of free oxaloacetate in the regulation of ketogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.