Abstract

Motivated by liquidity risk in mathematical finance, Lacker (2015) introduced concentration inequalities for risk measures, i.e. upper bounds on the liquidity risk profile of a financial loss. We derive these inequalities in the case of time-consistent dynamic risk measures when the filtration is assumed to carry a Brownian motion. The theory of backward stochastic differential equations (BSDEs) and their dual formulation plays a crucial role in our analysis. Natural by-products of concentration of risk measures are a description of the tail behavior of the financial loss and transport-type inequalities in terms of the generator of the BSDE, which in the present case can grow arbitrarily fast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.