Abstract

We describe the optical concentration properties of periodic arrays of conically tapered metallic apertures measured using terahertz (THz) time-domain spectroscopy. As a first step in this process, we optimize the geometrical properties of individual apertures, keeping the output aperture diameter fixed, and find that the optimal taper angle is 30°. A consequence of increasing the taper angle is that the effective cutoff frequency red shifts, which can be readily explained using conventional waveguide theory. We then fabricate and measure the transmission properties of a periodic (hexagonal) array of optimized tapered apertures. In contrast to periodic arrays of subwavelength apertures in thin metal films, which are characterized by narrowband transmission resonances associated with the periodic spacing, here we observe broadband enhanced transmission above the effective cutoff frequency. Further enhancement in the concentration capabilities of the array can be achieved by tilting the apertures towards the array center, although the optical throughput of individual tapered apertures is reduced with increasing tilt angle. Finally, we discuss possible future directions that utilize cascaded structures, as a means for obtaining further enhancement in the amplitude of the transmitted THz radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.