Abstract

Sweeping gas membrane distillation (SGMD) is a useful option for dehydration of aqueous solvent solutions. This study investigated the technical viability and competitiveness of the use of SGMD to concentrate aqueous solutions of 1,3-dimethyl-2-imidazolidinone (DMI), a dipolar aprotic solvent. The concentration from 30% to 50% of aqueous DMI solutions was attained in a bench installation with Liqui-Cel SuperPhobic® hollow-fiber membranes. The selected membranes resulted in low vapor flux (below 0.15 kg/h·m2) but were also effective for minimization of DMI losses through the membranes, since these losses were maintained below 1% of the evaporated water flux. This fact implied that more than 99.2% of the DMI fed to the system was recovered in the produced concentrated solution. The influence of temperature and flowrate of the feed and sweep gas streams was analyzed to develop simple empirical models that represented the vapor permeation and DMI losses through the hollow-fiber membranes. The proposed models were successfully applied to the scaling-up of the process with a preliminary multi-objective optimization of the process based on the simultaneous minimization of the total membrane area, the heat requirement and the air consumption. Maximal feed temperature and air flowrate (and the corresponding high operation costs) were optimal conditions, but the excessive membrane area required implied an uncompetitive alternative for direct industrial application.

Highlights

  • Membrane distillation (MD) is a thermally driven process in which only vapor molecules are transported through porous hydrophobic membranes

  • sweeping gas membrane distillation (SGMD) has been applied for the recovery of volatile chemicals like aroma compounds, [16] but examples of its application to the dehydration of glycerol [17] and triethylene glycol [18] have been published as well. Taking into account this available information, the main aim of this work is the analysis of the potential of SGMD for the concentration of aqueous solutions of 1,3-dimethyl-2-imidazolidinone (DMI)

  • This work investigated the applicability of sweeping gas membrane distillation (SGMD)

Read more

Summary

Introduction

Membrane distillation (MD) is a thermally driven process in which only vapor molecules are transported through porous hydrophobic membranes. The liquid feed to be treated by MD must be in direct contact with one side of the membrane, but without wetting the membrane to avoid the entrance inside the dry pores [1] This hydrophobic nature of the membrane prevents the mass transfer in liquid phase and creates a vapor–liquid interface at the pore entrance (Figure 1). In this interface, the volatile compounds in the liquid feed evaporate and diffuse across the membrane pores. On the opposite side of the membrane, the vapor is condensed or removed, depending of the configuration of the MD system [2].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call