Abstract

Estimation of a protein’s secondary structure from its circular dichroism spectrum usually requires accurate knowledge of the concentration and pathlength of the sample. Two recently described methods avoid this problem by analysis of g-factor spectra (McPhie, Anal. Biochem. 293, 109–119) or scaling of relative intensities (Raussens et al., Anal. Biochem. 319, 114–121). Application of the two methods to the same samples shows that they can have similar efficacies. Calculation with the latter method is more rapid, but the performance of the former is maintained over reduced wavelength ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.