Abstract

We prove that probability laws of certain multidimensional semimartingales which includes time-inhomogenous diffusions, under suitable assumptions, satisfy quadratic transportation cost inequality under the uniform metric. From this we derive concentration properties of Lipschitz functions of process paths that depend on the entire history. In particular, we estimate concentration of boundary local time of reflected Brownian motions on a polyhedral domain. We work out explicit applications of consequences of measure concentration for the case of Brownian motion with rank-based drifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.