Abstract

Here we report on a scanning tunnelling microscopy (STM) investigation on the self-assembly of C3- and C2-symmetric molecules at the solution/graphite interface. 1,3,5-tris((E)-2-(pyridin-4-yl)vinyl)benzene and 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane are used as model systems. These molecules displayed a concentration dependent self-assembly behaviour on graphite, resulting in highly ordered supramolecular structures, which are stabilized jointly by van der Waals substrate-adsorbate interactions and in-plane intermolecular H-bonding. Denser packing is obtained when applying a relatively high concentration solution to the basal plane of the surface whereas a less dense porous network is observed upon lowering the concentration. We show that the molecular conformation does not influence the stability of the self-assembly and a twisted molecule can pack into dense and porous architectures under the concentration effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.