Abstract

The physiochemical properties of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in adiponitrile (ADN) electrolytes were explored as a function of concentration. The phase diagram and ionic conductivity plots show a distinct relationship between the eutectic composition of the electrolyte and the concentration of maximum ionic conductivity in the 25 °C isotherm. We propose a structure-based explanation for the variation of electrolyte ionic conductivity with LiTFSI concentration, where the eutectic concentration is a transitionary region at which the structure changes from solvated contact ion pairs to extended units of [Liz(ADN)xTFSIy]z−y aggregates. It is found through diffusion coefficient measurements using pulsed-field gradient (PFG) NMR that both and increase with concentration until 2.9 M, where after Li+ becomes the fastest diffusing species, suggesting that ion hopping becomes the dominant transport mechanism for Li+. Variable diffusion-time (Δ) PFG NMR is used to track this evolution of the ion transport mechanism. A differentiation in Li+ transport between the micro and bulk levels that increases with concentration was observed. It is proposed that ion hopping within [Liz(ADN)xTFSIy]z−y aggregates dominates the micro-scale, while the bulk-scale is governed by vehicular transport. Lastly, we demonstrate that LiTFSI in ADN is a suitable electrolyte system for use in Li-O2 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.