Abstract
Gram-negative bacteria such as Escherichia coli have an inner membrane and an asymmetric outer membrane (OM) that together protect the cytoplasm and act as a highly selective permeability barrier. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the OM and is essential for the survival of nearly all Gram-negative bacteria. Recent advances in understanding the proteins involved in the transport of LPS across the periplasm and into the outer leaflet of the OM include the identification of seven proteins suggested to comprise the LPS transport (Lpt) system. Crystal structures of the periplasmic Lpt protein LptA have recently been reported and show that LptA forms oligomers in either an end-to-end arrangement or a side-by-side dimer. It is not known if LptA oligomers bridge the periplasm to form a large, connected protein complex or if monomeric LptA acts as a periplasmic shuttle to transport LPS across the periplasm. Therefore, the studies presented here focus specifically on the LptA protein and its oligomeric arrangement and concentration dependence in solution using experimental data from several biophysical approaches, including laser light scattering, crosslinking, and double electron electron resonance spectroscopy. The results of these complementary techniques clearly show that LptA readily associates into stable, end-to-end, rod-shaped oligomers even at relatively low local protein concentrations and that LptA forms a continuous array of higher order oligomeric end-to-end structures as a function of increasing protein concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.