Abstract

Rifampin is a cornerstone of modern antituberculosis therapy. However, rifampin's half-life of 3 h is believed to limit its utility for intermittent therapy, so new congeners with long half-lives are being developed. Using an in vitro pharmacokinetic-pharmacodynamic model of tuberculosis, we examined the relationships between rifampin exposure, microbial killing of log-phase-growth Mycobacterium tuberculosis, and suppression of resistance. Rifampin's microbial killing was linked to the area under the concentration-time curve-to-MIC ratio. The suppression of resistance was associated with the free peak concentration (C(max))-to-MIC ratio and not the duration that the rifampin concentration was above MIC. Rifampin prevented resistance to itself at a free C(max)/MIC ratio of > or =175. The postantibiotic effect duration was > or =5.2 days and was most closely related to the C(max)/MIC ratio (r(2) = 0.96). To explain rifampin's concentration-dependent effect, we examined the kinetics of rifampin entry into M. tuberculosis. Rifampin achieved concentration-dependent intracellular steady-state concentrations within 15 min. Our results suggest that doses of rifampin higher than those currently employed would optimize the effect of rifampin, if patients could tolerate them. Another major implication is that in the design of new rifampin congeners for intermittent therapy, the important properties may include (i) the efficient entry of the rifamycin into M. tuberculosis, (ii) the achievement of a free C(max)/MIC of >175 that can be tolerated by patients, and (iii) a long postantibiotic effect duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.