Abstract

Stem cell-based spiral ganglion neuron (SGN) replacement therapy has been proposed to be a promising strategy to restore hearing either via replacing degenerated neurons or by improving the efficacy of cochlear implants which rely on functional neurons. However, lack of suitable donor cells and low survival rate of implanted cells are the major obstacles to successful implementation of therapeutic transplantation. The present study investigated the potential of mouse inner ear statoacoustic ganglion (SAG)-derived neural progenitors (NPs) to differentiate toward SGN-like glutamatergic cells and the influence to cell survival and differentiation when nerve growth factor (NGF) was supplied. We found that SAG-NPs could form neurospheres, proliferate, and differentiate into cells expressing neuronal protein neurofilament and β-III tubulin. NGF affected the cell fate of SAG-NP in a concentration-dependent manner in vitro. Low concentration of NGF (2-5 ng/mL) promoted cell proliferation. Medium concentration of NGF (20-40 ng/mL) stimulated cells to differentiate into bi-polar SGN-like cells expressing glutamatergic proteins. High concentration of NGF (100 ng/mL) could rescue cells from induced apoptosis. In the in vivo study, NGF (100 ng/mL) dramatically enhanced SAG-NP survival rate after implantation into adult mammalian inner ear. This finding raises the possibility to further induce these NPs to differentiate into SGN-like neurons in future in vivo study. In conclusion, given the capability of proliferation and differentiation into SGN-like cells with the supplement of NGF in vitro, SAG-NPs can serve as donor cells in stem cell-based SGN replacement therapy. NGF improved the survival of SAG-NPs not only in vitro but also in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.