Abstract

Colloidal Zinc oxide quantum dots (ZnO QDs) prepared with varying concentrations through precipitation method were deposited on flexible ITO/PET substrates using spin-coating technique. Various characterization tools were utilized to investigate the morphological, structural, electrical and optical properties of the films. The crystallinity of the films was found to improve with increasing ZnO QD concentration (ZQC) as evident from the X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies. Crystallographic and optical parameters were evaluated and explained in depth. The average nanograin size and bandgap were increased and decreased respectively, from ∼5 nm to ∼8 nm and 3.29 eV–3.24 eV with an increase in ZQC from 10 mg/mL to 70 mg/mL. Columnar structure growth of the films is revealed by AFM results. The films showed decent optical transparency up to 81%. All the ZnO films exhibited n-type semiconducting property as indicated by the electrical measurements with carrier mobility and low resistivity of 12.21–26.63 cm2/Vs and 11.84 × 10−3 to 13.16 × 10−3 Ω cm respectively. Based on the experimental findings, ZnO QD nanostructure film grown at 50 mg/mL is envisaged to be a potential candidate for flexible perovskite photovoltaic application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call