Abstract

In the southwest of Iran over 130,000 ha of land are under sugarcane (Saccarum officinarum). In these sugarcane fields, about 400 kg ha−1 diamonium phosphate (DAP) and 400 kg ha−1 urea are applied annually. Four sugarcane growing sites were selected for this study: Haft-tapeh, Karoon, Shoeibieh and Ghazali with cultivation histories of 36, 20, 2 and 1 years, respectively. For each area, soil samples (0–30 cm) were taken from a transect of uncultivated, and both furrows and ridges of cultivated land. Electrical conductivity (EC), pH, clay, and calcium carbonate and organic carbon (OC) contents, Cl, Cd, Ni and Zn of 101 soil samples were measured. Cadmium profile distribution to a soil depth of 300 cm was determined, and the heavy metal concentrations in sugarcane and the associated soil samples of the three sugarcane sites were measured. The Cd and Ni contents among the sugarcane sites differed where Cd was related to clay content and Ni was related to OC content of soils. Cadmium content in sugarcane cultivated soil was lower compared to uncultivated soil even after years of application of P fertilizers. Nickel and Cd contents of sugarcane were much higher than levels in top soils but there was no significant relationship between Cd or Ni contents of sugarcane and soil chemical properties. The Zn content of soils decreased as either EC or Cl concentration of soils increased. There were no significant differences in Zn contents between different sugarcane sites and also between cultivated and uncultivated soils. Results also indicated that Cd was accumulated in bagasse and Ni was primarily accumulated in bagasse and molasses, but these heavy metals of white sugar were lower than the detectable values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call