Abstract

The field and temperature dependences of the magnetization of the semimagnetic semiconductor HgSe:Fe have been studied experimentally. The spin splitting of the Landau levels in the de Haas-van Alphen quantum oscillations has been recorded in the iron impurity concentration interval of 7 × 1018 cm−3 < NFe < 2 × 1019 cm−3. The effective area of the extreme cross section of the Fermi surface has been determined from the obtained dependences of the oscillation period on the iron concentration, and the concentration of the collectivized electrons under conditions of the stabilization of the Fermi level on the iron donor level has been estimated. The critical impurity concentration at which the sharp increase in the Curie-Weiss temperature occurs owing to the spontaneous spin polarization of the system of hybridized electron states in iron-doped mercury selenide has been determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.