Abstract
A mass distribution model was used to predict the fate of Diuron, Irgarol 1051 and Fenitrothion in Seto Inland Sea which is located in western Japan. This was done by using concentration, degradation, and literature data. Diuron and Irgarol 1051 in Seto Inland Sea are mainly derived from antifouling paints used for ships and boats. On the other hand Fenitrothion exclusively comes from land via rivers and atmospheric deposition. The total inputs/yr to Seto Inland Sea were found to be 104 tons, 7.65 tons and 5.14 tons for Diuron, Irgarol 1051 and Fenitrothion, respectively. The pesticide residence times were 0.26 yr, 0.36 yr and 0.17 yr for Diuron, Irgarol 1051 and Fenitrothion, respectively. Photodegradation was faster than biodegradation. In seawater, the half-life ranges were 37.9-57.3 d for photodegradation. In the same seawater the half-life ranges were 1650-2394 d for biodegradation. Photodegradation is effective in surface water (0-5 m depth) while biodegradation occurs throughout the entire water column. Plankton and fishes accumulate these pesticides significantly. The pesticides are deposited (sorbed and buried with) sediments (between 74 and 87% of total input amounts). The open ocean is an important sink accounting for between 8 and 17% of the total pesticide input amounts while photo- and biodegradation accounts for a small percentage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.