Abstract

Coals are now viewed as a promising source of rare earth elements increasingly often. Rare earth elements (REE) are known to occur both in the organic and mineral components of brown coals. This study aims at investigating the applicability of mechanochemical activation for concentrating rare earth elements (including Sc, Y, La and lanthanides) in different brown coal fractions. Mechanochemical activation of brown coal in the absence of reagents, as well as additives of sodium percarbonate, monosodium phosphate, and sodium chloride, was carried out. Mechanochemical activation does not cause degradation of humic acid–REE complexes contained in pristine coal. The REE concentration process in the samples of mechanochemically activated coal can be attributed both to formation of new oxygen-containing groups in humic acids (HA) and to binding of REEs to oxygen-containing groups already contained in coal due to vigorous solid-phase mechanical mixing. A method for mechanochemical activation of coal, which allows one to transfer up to 93 ± 7% REEs into the organic alkali-soluble fraction – the HA fraction (while HA in the pristine coal contain only 38 ± 3% REE) – has been developed. The estimated total concentration of REEs in pristine coal ash is 8000 ppm. The estimated REE content in the ash of the product (HA fraction) is as high as 17 300 ppm. Concentrations of Ce, Nd and Y in the ash of the product are 6000 ppm, 4200 ppm and 2500 ppm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.