Abstract

A new theoretical and experimental ‘current mismatch’ analysis of CPVM modules, including series resistance effects, is proposed. It allows predicting the I–V curve and the maximum power point of the module, considering its series resistance value and a given mismatch condition, for all the possible circuital module topologies having a fixed number of Multi-junction (MJ) solar cells. The optimum module circuital layout can be determined considering the mismatched cells number, the mismatch distribution in the module, the current mismatch percent value related to each cell, the module series resistance value and the resistance value of cables connecting the module to the inverter. The new theoretical approach is validated on a 144 MJ solar cells Point-Focus module, of which, in order to experimentally simulate the mismatched conditions, some cells are on purpose blinded and the module experimental I–V curve detected. The experimental curves are successfully compared with the theoretical ones predicted by the modeling application. On the base of the theoretical mismatch analysis for modules consisting of only-one string with series-connected receivers, an original algorithm is developed to identify the current receiver's mismatch starting from any experimentally detected I–V curve, also for curves presenting many current steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.