Abstract

Burning agricultural waste causes local air pollution and global warming. Agricultural waste, such as rice husks, contains silica reserves that can be processed into nano silica and used as a substrate for the immobilization of enzymes. The present study attempts to develop efficient silica-based nano-biocatalysts for concentrating omega-3 fatty acids in algal oil by hydrolyzing specific short-chain fatty acids. In this regard, tetraethyl orthosilicate (TEOS) and rice husk ash (RHA) were used as precursors to obtain nano-silica supports. Candida rugosa lipase (CRL) was then physically adsorbed and chemically cross-linked onto the created silica nano supports. The immobilized nano-systems created using the physical adsorption approach showed the maximum binding efficiency and enzymatic activity of CRL. The protein content of the CRL physically adsorbed in TEOS was 925 mg/g, while the protein loading in the RHA systems was 938 mg/g. However, the enzymatic activity of the selected systems for hydrolyzing para nitro-phenol palmitate (100 mM PBS buffer at pH-7.2, for 10 min at 37 °C) was 56 units/mg for the RHA system and 707 units/mg for the TEOS system. These two nano-enzyme systems were utilized further to hydrolyze the Nannochloropsis oceanica oil, and a physically adsorbed CRL TEOS system was found to have a 2.5-fold enrichment in eicosapentaenoic acid (EPA) which is used in food and pharmaceutical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.