Abstract

The extraction process of highly demanded lithium from brine normally starts with a solar evaporation pond to increase the lithium concentration, which takes more than a year and is weather-dependent. This work evaluated the enrichment of lithium from salt lake brine using graphene oxide (GO) composite pervaporation membrane with the crystallizer unit. The deposition of stacked GO layer on the commercially available hydrophobic membranes can tackle the membrane wetting and salt crystallization issues. The initial water flux was 11 L/m2 h at 70 °C, which was 20 times higher than that of solar evaporation pond (~0.5 L/m2 h) and 10 times lower footprint. With high initial feed concentration (>200 g/L of salt) the GO composite pervaporation membrane increased lithium concentration from 0.3 to 1.27 g/L (73% feed volume reduction). Assuming 10 m3/day capacity of the proposed solar pervaporation system, an economic analysis showed that the technique is not economically sustainable when solely aiming at the lithium extraction, while it becomes competitive with the traditional method when aiming at simultaneously producing deionized water and lithium. A payback time of 3.6–27 years is achievable with the sale price of water and LiOH at US$ 0.3–1 per 20 L and US$ 20 per kg, respectively. A continuous process is also possible with backup gas heater and waste heat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.